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We have studied an idealized calamitic liquid-crystal model, consisting of a linear rigid array of nine soft
repulsive spheres, employing both theory and molecular dynamics simulation. The phase behaviorswhich
includes crystalline, smectic, nematic, and isotropic phasesd and structure of a collection of these rodlike
particles have been determined by molecular dynamics simulation in an isothermal-isobaric ensemble. The
liquid crystalline part of the phase diagram has been compared to that emerging from an Onsager-type density-
functional theory. We have found a fair agreement between theory and computer simulation results, with a
similar accuracy for the smectic to nematic and nematic to isotropic phase transitions.
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I. INTRODUCTION AND DESCRIPTION OF THE MODEL

Among the numerous models of rodlike liquid-crystal
sLCd molecules proposed and studied during the last de-
cades, particular attention has been recently pointed toward
those composed of spherical beads linked together to give
idealized elongated particles. These models can be further
differentiated on the basis of the nature of the spherical units,
of their connectivity, and of the degree of flexibility of the
overall chain.

For example, a number of hard spheres, either tangent or
fused with a bond length smaller than the diameter, can be
held rigidly along a linear array. The constraint of rigidity
can then be removed step by step, allowing a systematic
investigation of the role of flexibility. A lot of work has been
done on such models by both theory and simulationf1–14g.
Most simulations have been carried out via the Monte Carlo
sMCd f15g method, with the interest directed basically to
phase behavior and phase transitions involving ordered flu-
ids.

Besides hard spheres, also soft spherical beads have been
adopted, either repulsive or possessing an additional attrac-
tive tail. In Ref. f16g the phase behavior of a system ofN
=600 rigid rodlike particles, each composed of 11 sites and
site-site interactions described by a potential of ther−12 form,
was sketched by molecular dynamicssMDd simulationf15g.
This study was extended in Ref.f17g, where Gibbs-Duhem
integration method was employed to trace phase coexistence
lines. The latter work was further extended in Ref.f18g,
where also the effect of the attractive interactions was con-
sidered. Elongated liquid-crystal models made up of linearly
connected four Lennard-Jones sites were investigated in
Refs.f19g andf20g; the author of the latter comments on the
possibility of using these models to study liquid crystals in
polymer matrices. Stiff and semiflexible models of this type
were also studied in Ref.f21g. The advantage of using soft-
core beads is that MD simulations are not technically de-
manding as in the case of hard-body particles. In these stud-
ies, the interest was again almost exclusively focused on
static properties, notwithstanding the possibility offered by
the MD technique to address dynamical behavior.

Among the theoretical studiesf4,6–11g of particular inter-
est is, in our opinion, that of Ref.f7g, where it was shown

that Onsager density functional theorysDFTd f22g with Par-
sons scalingf23g is able to give a reliable description of the
isotropic to nematic phase transition, even for semiflexible
particles, where it was found superior than the well-
established Khokhlov-Semenov theoryf24–26g. However,
all theoretical studies on this type of models have considered
spatially homogeneous fluids.

We intend to study the effect of chain flexibility on global
LC phase behavior and structure, and on both single-particle
and collective dynamical quantities. As a first step of this
long-term project, we have studied a system of rigid par-
ticles, each one composed of nine fused soft spherical beads
ssee Fig. 1d. The site-site pair interaction is equal to the re-
pulsive part of the the Lennard-Jones potential in the Weeks-
Chandler-AndersensWCAd f27g separation; that is,
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The site-site bond length has been kept equal to 0.6s so
that the length-to-width ratiok of each particle is<6. We
have assumed«=6.0310−22 J ands=3.9 Å. Each site has a
massm=1531.67310−24 g. We have computed the phase
behavior of a system ofN=600 particles employing the MD
technique in the isothermal-isobaric ensemblesNPTd and
compared the thermodynamical and single-particle structural
results of the smectic, nematic, and isotropic phases to those
obtained from a simple Parsons theory.

We recapitulate theory in Sec. II; the description is rather
detailed for the benefit of the reader unfamiliar with the
topic. MD NPT simulations are then described in Sec. III.
The presentation and discussion of the results of these calcu-
lations follow in Sec. IV. In Sec. V, we draw our conclusions.
Dynamical propertiesstranslational and reorientational dy-

FIG. 1. The site-site liquid-crystal model.
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namics, viscosityd of the same system will be the object of a
subsequent paper.

II. PARSONS THEORY

In the field of liquid-crystal statistical thermodynamics, a
role of prime importance is played by the Onsager theory
f22g, a density functional theoryante litteram. In a DFT
approach the usual splitting of the Helmhotz free energyF in
an ideal partFid, known exactly, and an excess partFex,
which depends on interparticle interactions, is adopted. For a
system ofN rigid particlessthat is whose mechanical state is
described by the set of translational coordinatesr and by a
set of Euler anglesVd in a volumeV and at a temperatureT,
the ideal free energy is written as

Fid = kBTE drdVrsr ,VdlnFnT

e
rsr ,VdG , s2d

wherekB is the Boltzmann constant andnT the De Broglie
thermal volume. It is seen that the ideal free energy is a
functional of the single particle density,rsr ,Vd. The basic
idea of DFT is to assume that also the excess free energy is
a functional ofrsr ,Vd.

In the homogeneous case, one may suppose to expressFex
as a virial sum

Fex= NkBTo
n.0

r0
n

n
Bn+1ffsVdg, s3d

where r0=N/V and Bn+1ffsVdg are the virial coefficients.
They are functionals of the orientational distribution function
fsVd, normalized to unity, since a system of rigid and aniso-
tropic particles can be seen as an infinitely polydisperse mix-
ture where every component is identified by its orientation in
a fixed frame of reference. Onsager observed that, for rodlike
particles, the virial sum should converge as the aspect ratio
goes to infinity. Thus, only the second virial coefficient has
to be retained for needlelike particles. In this case

Fex= NkBT
r0

2
E E dVdV8fsVdfsV8dysV,V8d, s4d

whereysV ,V8d is minus the spatial integral of the appropri-
ate Mayer function. Equations4d provides the exact expres-
sion of the excess free energy for a homogeneous system of
rodlike particles with an infinite aspect ratio. Unfortunately,
the convergence of the virial series is not as rapid for elon-
gated particles of arbitrary length-to-width ratio. This was
observed by Straleyf28g, who estimated that the Onsager
theory should furnish results of quantitative relevance fork
.100, but it is invalid for particles of moderate aspect ratio,
such as typical thermotropic mesogenic molecules. Although
later calculationsf29g showed that the prediction of Ref.f28g
are too pessimistic, they, nevertheless, confirmed that trun-
cating the virial series after its leading term produces inac-
curate results for particles withk of the order of magnitude
of 1–10.

A way to correct the Onsager theory, avoiding the techni-
cally demanding calculation of the higher-order virial coef-

ficientssactually done a few times in the pastf30–32gd, is to
resort to the decoupling approximation of Parsonsf23g. It
consists of a resummation of the virial series where the sec-
ond coefficient is calculated exactly and the next ones are
approximated by mapping them onto those of a reference
fluid of “equivalent” hard spheres; that is,

BnffsVdg .
Bn

HS

B2
HSB2ffsVdg, n . 2. s5d

As a consequence,Fex becomes approximated by the follow-
ing expression:

Fex. Fex
HSB2ffsVdg

B2
HS . s6d

Equations6d would be of little use without a knowledge of
Fex

HS. Fortunately, it is well known that the performance of the
Carnahan-Starling expressionf33g for the excess free energy
of a hard-sphere fluid is very good. Furthermore, it is a com-
mon choice to select as “equivalent” the fluid of hard spheres
having the same volume of the particle considered. In our
case, the particles are soft and their volume is not a well-
defined quantity. However, the shape of our particles closely
resembles that of hard spherocylinders, whose excluded vol-
ume in the parallel configurationsB2

i d is eight times the vol-
ume of a single spherocylinder. We have assumed that the
same relationship holds for our particles. Equations6d even-
tually turns out to be

Fex. NkBT
r0

2

1 −
3

4
r0v0

s1 − r0v0d2B2ffsVdg, s7d

being v0=B2
i /8. The success of Parsons theory to give a

faithful account of the thermodynamics of isotropic to nem-
atic phase transition is well documented in the literature
f34–37g. The same idea has been applied also to two-
dimensional fluidsf38,39g and mixturesf40–45g.

However, in Ref.f46g it was recognized that a generali-
zation of Eq.s7d to a one-dimensional positionally ordered
fluid gives for the nematic to smectic phase transition in hard
spherocylinders coexistence data as reasonable as those char-
acterizing the nematic to isotropic phase transition. Further-
more, the level of accuracy reached is at least the same as
that obtained with more sophisticated DFTs specifically de-
vised to treat layered phasesssee, e.g., Ref.f47gd. This was
later confirmed in Ref.f36g where the bifurcation points of
Ref. f46g were compared to computer simulation data and in
Refs.f44g andf45g where the binodal points were calculated
and compared to accurate MC simulation resultsf48g.

A generalization of Eq.s7d to spatially inhomogeneous
fluid is provided by the following expression:

CINACCHI, DE GAETANI, AND TANI PHYSICAL REVIEW E 71, 031703s2005d

031703-2



Fex.
kBT

2

1 −
3

4
r0v0

s1 − r0v0d2

3E E E E drdVdr 8dV8rsr ,Vdrsr 8,V8d

3Msr 8 − r ,V,V8d, s8d

whereMsr 8−r ,V ,V8d is minus the Mayer function. In the
case of smecticA phases of layer spacingd and whose con-
stituents align preferentially alongz, Eq. s8d reduces to

fex=
Fex

V
.

kBT

2

1 −
3

4
r0v0

s1 − r0v0d2

1

d
E

0

d

dzE
−`

+`

dz8

3E E dVdV8rsz,Vdrsz8 − z,V8dAsz8 − z,V,V8d,

s9d

where we have introduced the excess free energy densityfex
andA sz8−z,V ,V8d is the area obtained by integrating onx
andy minus the Mayer function of two particles whose cen-
ters of mass are located atz andz8 in the laboratory frame.
Assuming that positional and orientational variables are de-
coupled, we rewrite Eq.s9d as

fex.
kBT

2

1 −
3

4
r0v0

s1 − r0v0d2

1

d

3E
0

d

dzrszdE
−`

+`

dz8rsz8dasz8 − z,ffgd, s10d

whererszd is the single-particle positional distribution func-
tion, normalized as

1

d
E

0

d

dzrszd = r0, s11d

and

asz8 − z,ffgd =E E dVdV8fsVdfsV8dAsz8 − z,V,V8d

s12d

plays the role of an effective two-body potential.
The Helmhotz free energy expression is completed by

adding to Eq. s10d the ideal contribution, which in the
present case takes the following form:

f id = kBT
1

d
E

0

d

dzrszdFlnSnTrszd
e

D +E dVfsVdln 4pfsVdG;

s13d

we have introduced the constant ln 4p so that the value of
the orientational mixing entropy for our system of uniaxial
particles becomes 0 in the isotropic phase.

From the knowledge of the free energy density one can
obtain the value of the chemical potentialm as a function of
pressureP and temperature,

m =
f + P

r0
. s14d

At given pressure and temperature, the thermodynamically
stable phase is that corresponding to the absolute minimum
of the chemical potential. At this stage, it requires finding,
for every point in thesT,Pd plane, the minima of Eq.s14d as
a functional of the single-particle spatial densityrszd and
orientational distribution functionfsVd. In the homogeneous
case and for a second virial theory, this leads to an integral
equation of the type

ln KfsVd = − CE dV8fsV8dysV,V8d, s15d

whereK is determined to ensure that the orientational distri-
bution function is normalized to unity, andC is a prefactor
that depends on number density and is derived from that
entering the definition of excess free energy in the Onsager
and Parsons approximations. Several methods have been
proposed to numerically solve Eq.s15d, from those based on
the expansion offsVd f49,50g or ln fsVd f51g in Legendre
polynomials to the very reliable iterative technique proposed
in Ref. f52g. Alternatively, we can directly minimize free
energy by the simulated annealing method of Ref.f53g or, as
done by Onsager himself and Straley, by using parametrical
trial functions. The methods based on an iterative technique
f52,53g have the advantage that no particular form offsVd
has to be assumed, but their application to the inhomoge-
neous case is not straightforward. Methods based on trial
functions, though certainly more approximated, are equally
reliable if a judicious choice of the parametrization is done.
We have therefore decided to adopt the following parametri-
zation of spatial and orientational distribution functions:

rszd ~ r0 expFl cosS2p
z

d
DG , s16d

and

fsVd ~ expfLshdP2scosudg, s17d

P2scosud being the second Legendre polynomial of the co-
sine of the polar angle and with the proportionality constants
ensuring the respective correct normalization. The functional
forms assumed for the distributions are the same arising in
the Maier-Saupe and McMillan mean-field theories for nem-
atics f54g and smecticsf55g. In addition, we observe that
they are consistent with the application of the maximum en-
tropy principle f56g to determine the most probable single-
particle distribution function of a system of known smectic
order parametert=kcoss2pz/ddl and nematic order param-
eterh=kP2scosudl. Note that the latter relation establishes a
one-to-one correspondence betweenL and h. We have de-
termined the chemical potential as a function of temperature
and pressure for the isotropic, nematic, and smectic phases.
This was done by minimizing, through a nonlinear routine,
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Eq. s14d with respect to:sid r0, for the isotropic phase, keep-
ing fixed and equal to 0l andh and leavingd undefined;sii d
r0 andh, for the nematic phase, keeping fixed and equal to 0
l and leavingd undefined; andsiii d r0, h, l, andd, all taken
free for the smectic phase.

The integrals involved have been evaluated numerically.
Phase coexistence points at several values of temperature
have been determined by finding the pressure at which
chemical potentials are equal. The results are presented in
Sec. IV and confronted with those obtained in the MD simu-
lations, whose technical details are described below.

III. ISOTHERMAL-ISOBARIC MOLECULAR DYNAMICS
SIMULATIONS: COMPUTATIONAL DETAILS

We have considered a system ofN=600 particles. The
system has been simulated by the molecular dynamics tech-
nique in the isothermal-isobaric ensemble. The Nosé-Hoover
thermostatf57g has been used to constrain average tempera-
ture to the imposed value. This technique has been coupled
with the Parrinello-Rahman methodf58g, allowing the shape
sonly in spatially inhomogeneous phasesd and the volume of
the computational box to fluctuate, thus permitting the sys-
tem to reach the imposed value of the average pressure. The
particle beads are maintained in the configuration described
in Sec. I by means of the method of constraints reviewed in
Ref. f59g. We have considered two pressures, 1.0 and
2.5 Kbar and several temperatures in the range 50–375 K
for the lower pressure and 300–700 K forP=2.5 Kbar. At
the lowest temperatures, we have started the simulation from
a perfect crystal in a hexagonal closed-packed configuration,
stretched along thex coordinate of the laboratory frame and
with all particles parallel to this direction. The resulting com-
putational box was monoclinic, with the following cell vec-
tors and angles:a=sax,0 ,0d, b=s0,by,0d, andc=s0,cy,czd;
a=90°, b=90°, andg=60°. The initial configuration of the
other temperatures has been the final one of the equilibration
run of the respective previous temperature. To avoid un-
physical rotation of the simulational box,a has been con-
strained to lie onx andb to move in thexy plane. The time
step employed has been 5 fs. For every state point consid-
ered, a thermalization run of 500 ps has been followed by a
production run of 1 nssat selected state points, we have ex-
tended the time interval simulated up to 2 ns to check the
stability of our results, which has proved very satisfactoryd
during which averages of thermodynamical and structural
properties of interest have been acquired. They include the
number density, order parameters, single-particle distribution
functions, and a family of pair-correlation functions. The re-
sults are presented and discussed below.

IV. RESULTS AND DISCUSSION

We begin the presentation of our results by reporting in
Table I the values of the thermodynamical quantities entering
the equation of state, i.e., pressure, temperature, and density.
The last column contains the symbol of the corresponding
type of phase.

Thus, atP=1.0 Kbar a crystallinesCd phase is observed
up to T=165 K, while atP=2.5 Kbar it is present up toT
=375 K. The C phase then undergoes a transition to a smec-
tic sSd phase, betweenT=165 K andT=175 K at the lower
pressure and betweenT=375 K andT=400 K at the higher
pressure. The existence of the C-S phase transition is first
indicated by the qualitatively different behavior of the layer
pair-correlation functionglsrd, together with the qualitatively
similar behavior of the parallel pair-correlation function
gpsrd. They are shown in Figs. 2sad and 2sbd, respectively, at
temperatures ofT=375 K andT=400 K, for a pressure of
P=2.5 Kbar. The former, in an isothermal-isobaric en-
semble, is defined as

glsrd =
1

NK1

r
o

i
o
j.i

dsr − ur i j 3 n̂udQSr i j · n̂ −
,

2
DL ,

s18d

where d and Q are the Dirac and Heaviside functions, re-
spectively, whilen̂ is the directorsthe direction of preferred
orientationd, and, is the length of a particle, here assumed to
be 22.6 Å.glsrd gives information on the positional order
within a layer. In a crystalline phase it presents a long-range
structure, as that of Fig. 2sad at T=375 K, or, more distinctly,
at a lower temperature. The first peak corresponds to in-plane
nearest neighbors, while the positions of the two still re-
solved successive peaks are the mark of an in-plane hexago-
nal order.glsrd at T=375 K keeps oscillating at large dis-
tances where the function atT=400 K already approaches
the limiting value of unity. This proves the liquidlike char-
acter of the positional order inside a layer of the phase atT
=400 K. The latter is definitely classified as smectic from the
behavior of the parallel pair-correlation function of Fig. 2sbd.
The NPT definition of gpsrd is

gpsrd =
1

NK1

r
o

i
o
j.i

dsr − r i j · n̂dL; s19d

at bothT=400 K andT=375 K, as well as at lower tempera-
tures, this function, which gives information on positional
order along the director, shows an oscillating structure with
peaks being lower and wider, as the temperature is increased,
and separated by a distance of 22–23 Å.

The conclusions drawn from the analysis of the pair-
correlation functions are corroborated by the thermal behav-
ior of the bond orientational order parameterC6 and of the
smectic order parametert, shown in Figs. 3sad and 3sbd,
respectively, for a pressure of 2.5 Kbar. The former is de-
fined as

C6 =
1

3NUoi
o

jPnnsid
expsi6qi jdU , s20d

wherej Pnnsid means thatj is a nearest neighbor ofi andqi j

is the angle formed by the projection ofr i j onto a plane
normal to the director with an axis in this plane. By construc-
tion, we haveC6=1 in the case of perfect in plane hexagonal
order andC6=0 when that order is completely absent, as in
the smectic phase. Intermediate values ofC6 correspond to a
reduced in-plane hexagonal order, as it happens in a real hcp
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crystal. While atT=400 K C6=0, the smectic order param-
etert, most generally defined as

t = UKexpSi2p
z

d
DLU s21d

is far from being zero. It vanishes at the next temperature
examined at P=2.5 Kbar, that is T=435 K, and at T
=175 K at the lower pressure investigated. This is a clear
symptom that a transition to a positionally homogeneous
phase has occurred, as the featureless behavior of the pair-
correlation functions further testifies. This liquid phase is to
be classified as nematicsNd, being nonzero the orientational
order parameterh fFig. 3scd, for P=2.5 Kbarg. The latter is a
decreasing function of temperature, with a discontinuity at
T.600 K, being close to zero beyond. We can assume
600 K as the approximate temperature at which a nematic to
isotropic sId phase transition takes place atP=2.5 Kbar.
Analogously, the NI phase transition occurs atT.275 K for
a pressure of 1 Kbar.

We note that the smectic region is quite narrow, if com-
pared to that exhibited by hard spherocylinders of length-to-
width ratio equal to 6f48g. In the latter case we observe the
same sequence of phases; that is, Cs2.34d S s1.44d N s1.12d
I. We have indicated in parentheses the pressure in reduced

unit, P* =PD3/kBT sD is the diameter of the spherocylinderd,
of the corresponding phase transition. To make a compari-
son, we can choose for our particles a value ofD such that
the NI phase transition occurs at the same reduced pressure
as in the case of spherocylinders, thus obtaining: Cs1.78d S
s1.68d N s1.12d I. Smectic phase seems to be destabilized
with respect to both the crystalline phase and the nematic
phase.

In Fig. 4sad we plot the liquid-crystal phase diagram in the
temperature-pressure plane determined from the theory out-
lined in Sec. II. When compared to computer experiment
results, we see a fair agreement. At a fixed pressure, theory
overestimates SN and NI transition temperature by, roughly,
15%. The same level of accuracy is reached for coexistence
densities, displayed in Fig. 4sbd as a function of temperature.
It is worth noting that the performance of Parsons theory in
reproducing thermodynamic quantities of the SN phase tran-
sition is essentially the same as in the case of NI phase tran-
sition.

Among the approximations contained in theory, the cho-
sen parametrization of the singlet distribution functions can
be readily tested. In Fig. 5r*szd=rszd /r0 calculated in simu-
lation atP=2.5 Kbar andT=300, 350, 375 KsC phased and
T=400 K sS phased is reported together with the correspond-
ing curve fitted through Eq.s16d. A good accord is found at

TABLE I. Calculated values for the quantities entering the equation of state of the rigid nine beadlace
model.

P sKbard DP sKbard T sKd DT sKd 1000r0 sÅ−3d 1000Dr0 sÅ−3d Phase

1.0 0.1 50 5 2.88 0.04 C

1.0 0.1 100 5 2.73 0.03 C

1.0 0.05 150 6 2.53 0.02 C

1.0 0.05 165 5 2.47 0.04 C

1.0 0.03 175 5 2.35 0.02 S

1.0 0.01 200 2 2.09 0.01 N

1.0 0.03 250 4 1.97 0.01 N

1.0 0.05 275 8 1.89 0.02 N/I

1.0 0.07 300 6 1.81 0.04 I

1.0 0.05 325 9 1.78 0.02 I

1.0 0.07 350 9 1.74 0.03 I

1.0 0.07 375 8 1.71 0.03 I

2.5 0.08 300 7 2.79 0.01 C

2.5 0.09 350 9 2.71 0.01 C

2.5 0.09 375 10 2.67 0.015 C

2.5 0.09 400 10 2.50 0.015 S

2.5 0.08 435 12 2.32 0.01 N

2.5 0.08 450 11 2.30 0.01 N

2.5 0.07 500 11 2.23 0.01 N

2.5 0.09 550 14 2.17 0.015 N

2.5 0.08 600 15 2.08 0.015 N/I

2.5 0.09 625 16 2.05 0.015 I

2.5 0.09 650 17 2.02 0.015 I

2.5 0.1 675 18 2.00 0.015 I

2.5 0.1 700 18 1.98 0.015 I
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every temperature. However, the smectic order parameter
found in simulations at the SN phase transitions0.70, atP
=2.5 Kbard is higher than that calculated by theorys0.57 at
P=2.5 Kbard; in addition the smectic periodd found in
simulationss22–23 Åd is smaller by a factor of 15% than
that obtained in the theoretical procedure. We now pass to
the orientational distribution functions. Figure 6 showsfsud
at different temperatures, as obtained in simulations atP
=2.5 Kbar, together with the corresponding curves fitted by
Eq. s17d. A good agreement is apparent at all temperatures.
However, while the orientational order at the SN phase tran-
sition is captured rather well by theoryshS<0.93, hN
<0.85 in simulation atP=2.5 Kbar versushS=0.91 and
hN=0.87 from theory at the same pressured, the latter, as
expected, overestimatesh at the NI phase transitions0.65
versus<0.2–0.3d. Finally, we note that in the smectic phase
the probability to find particles perpendicular to the director
sthat are supposed to populate intralayer regionsd is vanish-
ing small. This may imply that, at least for the present model,
the decoupling between positional and orientational variables
is a good approximation.

V. SUMMARY AND CONCLUSIVE REMARKS

We have considered a system of elongated particles com-
posed of nine soft repulsive spheres held rigidly on a line.

The beads belonging to different particles interact through
the repulsive part of the Lennard-Jones potential in the well-
known WCA separation. The interaction parameters have
been chosen such that«, the well depth, takes the value of
6.0310−22 J ands, the range function, that of 3.9 Å. Adja-
cent beads in any single array are separated by a distance of
2.34 Å, so that the length-to-width ratio of a chain is ap-
proximately equal to 6.

The phase behavior of a system of 600 such particles has
been studied by molecular dynamics simulations in a
isothermal-isobaric ensemble, employing a Nosé-Hoover
thermostat coupled with the Parrinello-Rahman technique to
vary volume and shape of the computational box. Four
phases have been identified: crystalline, smectic, nematic,
and isotropic. They have been characterized by discontinui-
ties in density and order parameters and by the shape of the
calculated one- and two-particle distribution functions.

The LC thermodynamic phase coexistence data have been
confronted with those obtained from a simple Onsager-type
density functional theory with a Parsons scaling. The com-
parison has concerned not only the nematic to isotropic
phase transition but also the smectic to nematic one. We have
found a fair accord between theory and simulation, with a
degree of accuracy similar for both types of phase transition.
This could be of interest since Parsons theory was shown to
be the best, at present, simple approach providing a reason-
able description of the nematic to isotropic phase transition

FIG. 2. The layersad and parallelsbd pair-correlation functions
on either side of the crystal-to-smectic phase transition atP
=2.5 Kbar.

FIG. 3. sad: Bond orientationalsC6d; sbd smecticstd; scd nematic
shd order parameters, as a function of temperature atP=2.5 Kbar.
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thermodynamics in short-range repulsive models of liquid
crystals. This is well known for rigid bodies but it holds true
also for semiflexible particles, as demonstrated in Ref.f7g.
Thus, the calculations presented in Ref.f7g can be extended
to treat smectic phases formed by semiflexible particles and
may be of help in predicting and understanding trends in
phase diagrams due to the varying degree of chain flexibility.

There are several ways along which the present theory
may be improved. One is a possible better choice of the

“volume” of our soft particle, though some arbitrariness is
hard to avoid in this case.sNote that if the theory is applied
to hard spherocylinders, which have a well-defined volume,
the error in reproducing coexistence thermodynamic proper-
ties, especially density, is smallerf44,45gd. In the search of
the optimal “volume” it is difficult not to proceed by “trials
and errors.” Indeed, we have tried another definition ofv0,
namely, that corresponding to take it equal to the effective
volume f10g of the hard counterparts of our soft particles
sthat is, particles composed of nine hard spheres of diameter
3.9 Å held rigid on a line with a bond distance equal to
2.34 Åd. We have obtained basically the same results as in
Fig. 4, with the density varying less smoothly with tempera-
ture in the last case. Another possibility, yet untried, could be
to define an effective diameterd* for the soft beads, interact-
ing through Eq.s1d, as

d* =E
0

`

1 − expS−
U

kBT
Ddr

and takev0 as the volume of a linear array of nine hard
spheres with diameterd* and with a bond distance of 0.6d* .

An additional source of error certainly resides in the form
of the singlet distribution functions. This form can be im-
proved either by a larger number of parameters or by adopt-
ing a different method to minimize free energysfor instance,
the Monte Carlo annealing method described in Ref.f53gd.
However, both of these possible improvements are certainly
associated with a considerable increase in the computational
cost; sthe simulated annealing method may also possess a
further disadvantage, i.e., the slowness in reaching stationary
pointsd.

Anyway, we believe that the accuracy exhibited by
present theory is already acceptable, keeping in mind its aim
at reproducing, at least qualitatively, trends in phase dia-
grams of chain particles. We would like to stress that the
resummed second virial theory employed here is intended to
give an account of just the thermodynamics of liquid-crystal
phase transitions in calamitic model mesogens. We have seen

FIG. 4. Theoretical liquid crystal phase diagram. MD simulation
data are reported as grey ellipses with width and height determined
by the fluctuation of the corresponding quantity.

FIG. 5. Positional one-particle distribution
functions atp=2.5 Kbar and different tempera-
tures, obtained in simulationssolid linesd and fit-
ted via Eq.s16d sdotted linesd. The units of the
abscissas are Å
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that the agreement with computer experiment results gener-
ally gets worse as far as order parameters are concerned.
Moreover, we expect that the present theory will be able to
reproduce just the gross features of pair-correlation func-
tions. Indeed, the direct correlation function predicted by
theory is equal to the Mayer function with a density-
dependent prefactor, and this could be true only in the dilute

regime f60g. More elaborated density functional theories
ssuch as those based on the weighted density approximation
f47,61gd are to be used to address this point. The latter is still
rather in its infancy, though some progress has been recently
achieved, especially thanks to the evaluation of direct corre-
lation functions of model anisometric particlesf62g and its
use in the density functional theory formalismf63g.
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