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Numerical study of a calamitic liquid-crystal model: Phase behavior and structure
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We have studied an idealized calamitic liquid-crystal model, consisting of a linear rigid array of nine soft
repulsive spheres, employing both theory and molecular dynamics simulation. The phase betilaicior
includes crystalline, smectic, nematic, and isotropic phaaed structure of a collection of these rodlike
particles have been determined by molecular dynamics simulation in an isothermal-isobaric ensemble. The
liquid crystalline part of the phase diagram has been compared to that emerging from an Onsager-type density-
functional theory. We have found a fair agreement between theory and computer simulation results, with a
similar accuracy for the smectic to nematic and nematic to isotropic phase transitions.
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I. INTRODUCTION AND DESCRIPTION OF THE MODEL that Onsager density functional thedyFT) [22] with Par-

Among the numerous models of rodlike liquid-crystal SONS s_calingi23] is able to give a reliable description of the
(LC) molecules proposed and studied during the last delSOtropic to nematic phase transition, even for semiflexible
cades, particular attention has been recently pointed towar@@rticles, where it was found superior than the well-
those composed of spherical beads linked together to givestablished Khokhlov-Semenov theof4-26. However,
idealized elongated particles. These models can be furthéil theoretical studies on this type of models have considered
differentiated on the basis of the nature of the spherical unitsspatially homogeneous fluids.
of their connectivity, and of the degree of flexibility of the  We intend to study the effect of chain flexibility on global
overall chain. LC phase behavior and structure, and on both single-particle

For example, a number of hard spheres, either tangent @nd collective dynamical quantities. As a first step of this
fused with a bond length smaller than the diameter, can bng-term project, we have studied a system of rigid par-
held rigidly along a linear array. The constraint of rigidity ticles, each one composed of nine fused soft spherical beads
can then be removed step by step, allowing a systematitsee Fig. 1 The site-site pair interaction is equal to the re-
investigation of the role of flexibility. A lot of work has been pulsive part of the the Lennard-Jones potential in the Weeks-
done on such models by both theory and simulafibal4.  Chandler-AnderseWCA) [27] separation; that is,

Most simulations have been carried out via the Monte Carlo

(MC) [15] method, with the interest directed basically to o\ [o)\®
phase behavior and phase transitions involving ordered flu- U(r) = a S
ids.

Besides hard spheres, also soft spherical beads have been Ory= 2%
adopted, either repulsive or possessing an additional attrac- The site-site bond length has been kept equal to-G®
tive tail. In Ref.[16] the phase behavior of a systemMf  that the length-to-width ratiac of each particle is~6. We
=600 rigid rodlike particles, each composed of 11 sites anghgye assumed=6.0x 1022 J ando=3.9 A. Each site has a
site-site interactions described by a potential ofitféform,  massm=15x 1.67x 10724 g. We have computed the phase
was sketched by molecular dynami@dD) simulation[15].  pehavior of a system dfi=600 particles employing the MD
This study was extended in Réfl7], where Gibbs-Duhem technique in the isothermal-isobaric ensemBiPT) and
integration method was employed to trace phase coexisteng®mpared the thermodynamical and single-particle structural
lines. The latter work was further extended in REf8],  results of the smectic, nematic, and isotropic phases to those
where also the effect of the attractive interactions was congptained from a simple Parsons theory.
sidered. Elongated liquid-crystal models made up of linearly - we recapitulate theory in Sec. II; the description is rather
connected four Lennard-Jones sites were investigated ifetailed for the benefit of the reader unfamiliar with the
Refs.[19] and[20]; the author of the latter comments on the topjc. MD NPT simulations are then described in Sec. IlI.
possibility of using these models to study liquid crystals inThe presentation and discussion of the results of these calcu-
polymer matrices. Stiff and semiflexible models of this type|ations follow in Sec. IV. In Sec. V, we draw our conclusions.

were also studied in Ref21]. The advantage of using soft- pynamical propertiegtranslational and reorientational dy-
core beads is that MD simulations are not technically de-

manding as in the case of hard-body particles. In these stud-
ies, the interest was again almost exclusively focused on
static properties, notwithstanding the possibility offered by
the MD technique to address dynamical behavior.

Among the theoretical studi¢d,6—11 of particular inter-
est is, in our opinion, that of Ref7], where it was shown FIG. 1. The site-site liquid-crystal model.
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namics, viscosityof the same system will be the object of a ficients(actually done a few times in the pd80-32), is to
subsequent paper. resort to the decoupling approximation of Parsdgg]. It
consists of a resummation of the virial series where the sec-
ond coefficient is calculated exactly and the next ones are
l. PARSONS THEORY approximated by mapping them onto those of a reference

In the field of liquid-crystal statistical thermodynamics, a fluid of “equivalent” hard spheres; that is,
role of prime importance is played by the Onsager theory

[22], a density functional theorante litteram In a DFT HS
approach the usual splitting of the Helmhotz free enérgy B[f(Q)] = B_”Bz[f(Q)]’ n>2. (5)
an ideal partFy, known exactly, and an excess péit,, " hs

which depends on interparticle interactions, is adopted. For a

system ofN rigid particles(that is whose mechanical state is )

described by the set of translational coordinatesnd by a  AS @ consequencé,, becomes approximated by the follow-
set of Euler angle§)) in a volumeV and at a temperatufg 'Y €Xpression:

the ideal free energy is written as

Fig = ksT f drde(r,Q)In[%p(r,Q)} , ) F, FZ.XSBZE;‘;&S))]_ ©

wherekg is the Boltzmann constant ang the De Broglie

thermal volume. It is seen that the ideal free energy is &quation(6) would be of little use without a knowledge of
functional of the single particle density(r,(2). The basic  FHS Fortunately, it is well known that the performance of the
idea of DFT is to assume that also the excess free energy t§amahan_8tar|ing expressif3a] for the excess free energy

a functional ofp(r, Q). of a hard-sphere fluid is very good. Furthermore, it is a com-
In the homogeneous case, one may suppose to eXpess mon choice to select as “equivalent” the fluid of hard spheres
as a virial sum having the same volume of the particle considered. In our
n case, the particles are soft and their volume is not a well-

Fox=NksT >, @Bnﬂ[f(ml (3)  defined quantity. However, the shape of our particles closely
n>o N resembles that of hard spherocylinders, whose excluded vol-

iy - ume in the parallel configuratiofB)) is eight times the vol-
where pp=N/V and B,,,4[f(Q)] are the virial coefficients. P 9 ofis;) 9

Th f ionals of the ori ional distribution f * ume of a single spherocylinder. We have assumed that the
ey are functionals of the orientational distribution function g, relationship holds for our particles. Equatineven-
f(2), normalized to unity, since a system of rigid and aniso-

g . DI i - tually turns out to be
tropic particles can be seen as an infinitely polydisperse mix-

ture where every component is identified by its orientation in
a fixed frame of reference. Onsager observed that, for rodlike

particles, the virial sum should converge as the aspect ratio 1-—povo
goes to infinity. Thus, only the sgcond viria_l coefficient has Fox= NkBT%O—ZBZ[f(Q)]' (7)
to be retained for needlelike particles. In this case (1= povo)

Fex:NkBT%)ffdeQ’f(Q)f(ﬂ’)U(Q,Q’)v (4)  being vo=B)/8. The success of Parsons theory to give a
faithful account of the thermodynamics of isotropic to nem-
whereu(2,€)’) is minus the spatial integral of the appropri- atic phase transition is well documented in the literature
ate Mayer function. Equatiof¥) provides the exact expres- [34-37. The same idea has been applied also to two-
sion of the excess free energy for a homogeneous system dfimensional fluid§38,39 and mixtured40-45.
rodlike particles with an infinite aspect ratio. Unfortunately, ~However, in Ref[46] it was recognized that a generali-
the convergence of the virial series is not as rapid for elonzation of Eq.(7) to a one-dimensional positionally ordered
gated particles of arbitrary length-to-width ratio. This wasfluid gives for the nematic to smectic phase transition in hard
observed by Straley28], who estimated that the Onsager spherocylinders coexistence data as reasonable as those char-
theory should furnish results of quantitative relevancesor acterizing the nematic to isotropic phase transition. Further-
> 100, but it is invalid for particles of moderate aspect ratio,more, the level of accuracy reached is at least the same as
such as typical thermotropic mesogenic molecules. Althouglhat obtained with more sophisticated DFTs specifically de-
later calculation$29] showed that the prediction of R¢R8]  vised to treat layered phasésee, e.g., Ref47]). This was
are too pessimistic, they, nevertheless, confirmed that trurater confirmed in Ref[36] where the bifurcation points of
cating the virial series after its leading term produces inacRef.[46] were compared to computer simulation data and in
curate results for particles witk of the order of magnitude Refs.[44] and[45] where the binodal points were calculated
of 1-10. and compared to accurate MC simulation res[48].
A way to correct the Onsager theory, avoiding the techni- A generalization of Eq(7) to spatially inhomogeneous

cally demanding calculation of the higher-order virial coef-fluid is provided by the following expression:
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From the knowledge of the free energy density one can
keT 1- 2 Povo obtain the value of the chemical potentialas a function of

Fox=— pressureP and temperature,

2 (1-po)’
fjfjdrdﬂdr dQ’ p(r,Q)p(r',Q") P
XM(r' =1.0,07), e At given pressure and temperature, the thermodynamically

stable phase is that corresponding to the absolute minimum
whereM(r’-r,Q,Q’') is minus the Mayer function. In the Of the chemical potential. At this stage, it requires finding,
case of smectié phases of layer spacirdjand whose con- for every point in theT, P) plane, the minima of E¢(14) as

stituents align preferentially alorgy Eq. (8) reduces to a functional of the single-particle spatial densji{z) and
orientational distribution functio(2). In the homogeneous

v case and for a second virial theory, this leads to an integral
kB po 01 equation of the type
- dz dz
(1- PoUo) d

fex_ -

F
V
In Kf(Q) = —\Iff dQ'f(QHuQ,Q), (15
X J J dQdQ'p(z,Q)p(Z' - 2,Q")A(Z -2,Q0,07),
whereK is determined to ensure that the orientational distri-

(9 bution function is normalized to unity, an#l is a prefactor

that depends on number density and is derived from that
where we have introduced the excess free energy defgity entering the definition of excess free energy in the Onsager
andA (z'-z,0,Q)) is the area obtained by integrating Bn  and Parsons approximations. Several methods have been
andy minus the Mayer function of two particles whose cen-proposed to numerically solve E€L5), from those based on
ters of mass are located aandz’ in the laboratory frame. the expansion of(Q) [49,50 or In f(Q) [51] in Legendre
Assuming that positional and orientational variables are depglynomials to the very reliable iterative technique proposed

coupled, we rewrite E(9) as in Ref. [52]. Alternatively, we can directly minimize free
3 energy by the simulated annealing method of R&$] or, as
1-=pevo done by Onsager himself and Straley, by using parametrical
o keT 4 1 trial functions. The methods based on an iterative technique
&2 (1-pvo)?d [52,53 have the advantage that no particular formf@R)
d oo has to be assumed, but their application to the inhomoge-
f dzp(z)f dZ p(z)e(z -2[f]), (10) neous case is not straightforward. Methods based on trial
functions, though certainly more approximated, are equally

) . . . o reliable if a judicious choice of the parametrization is done.
wherep(2) is the single-particle positional distribution func- \ye have therefore decided to adopt the following parametri-
tion, normalized as zation of spatial and orientational distribution functions:

d
éf dzp(2) = po, (11) p(2) = po exp{)\ COE(ZWE)} , (16)
0 d

and and

f(Q) o« exd A(5)Py(cosh)], (17
a(z’—z,[f]):ffdeQ’f(Q)f(Q’)A(z’—z,Q,Q’) . )
P,(cos#) being the second Legendre polynomial of the co-
(12) sine of the polar angle and with the proportionality constants
ensuring the respective correct normalization. The functional
plays the role of an effective two-body potential. forms assumed for the distributions are the same arising in
The Helmhotz free energy expression is completed bythe Maier-Saupe and McMillan mean-field theories for nem-
adding to Eq.(10) the ideal contribution, which in the atics [54] and smectic§55]. In addition, we observe that
present case takes the following form: they are consistent with the application of the maximum en-
1 (d tropy principle[56] to determine the most probable single-
- kBT_f de(Z){ll’l( VTP(Z)> +j dOf(Q)in 4wf(9)}; particle distribution function of a system of known smectic
dJ, e order parameter=({cog2wz/d)) and nematic order param-
(13) eter p=(P,(cos#)). Note that the latter relation establishes a
one-to-one correspondence betweerand . We have de-
we have introduced the constant lr 40 that the value of termined the chemical potential as a function of temperature
the orientational mixing entropy for our system of uniaxial and pressure for the isotropic, nematic, and smectic phases.
particles becomes 0 in the isotropic phase. This was done by minimizing, through a nonlinear routine,
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Eq. (14) with respect tofi) p, for the isotropic phase, keep-  Thus, atP=1.0 Kbar a crystallindC) phase is observed
ing fixed and equal to @ and % and leavingd undefinedyfii) up to T=165 K, while atP=2.5 Kbar it is present up td
po and z, for the nematic phase, keeping fixed and equal to =375 K. The C phase then undergoes a transition to a smec-
\ and leavingd undefined; andiii ) py, 7, A, andd, all taken tic (S) phase, betweelfi=165 K andT=175 K at the lower
free for the smectic phase. pressure and betwedin=375 K andT=400 K at the higher
The integrals involved have been evaluated numericallypressure. The existence of the C-S phase transition is first
Phase coexistence points at several values of temperatuiredicated by the qualitatively different behavior of the layer
have been determined by finding the pressure at whiclpair-correlation functiomy(r), together with the qualitatively
chemical potentials are equal. The results are presented gimilar behavior of the parallel pair-correlation function
Sec. IV and confronted with those obtained in the MD simu-g,,(r). They are shown in Figs.(@ and 2b), respectively, at
lations, whose technical details are described below. temperatures of=375 K andT=400 K, for a pressure of
P=2.5 Kbar. The former, in an isothermal-isobaric en-
semble, is defined as

Il. ISOTHERMAL-ISOBARIC MOLECULAR DYNAMICS 1/1 ¢
SIMULATIONS: COMPUTATIONAL DETAILS g|(r) — _<_E 2 S(r - |rij X ﬁ|)®<rij A= E)>’
S

We have considered a system NE600 particles. The
system has been simulated by the molecular dynamics tech- (18)

nique in the isothermal-isobaric ensemble. The Nosé-Hoovef, ..o s and ® are the Dirac and Heaviside functions. re-
thermosta(57] has been used to constrain average temperas ectively, whilel is the director(the direction of preferred

ture to the imposed value. This technique has been coupled. - . :
) . . ientation), and< is the length of a particle, here assumed to
with the Parrinello-Rahman meth¢f8], allowing the shape be 22.6 A.g(r) gives info?mation %n the positional order

(only in spatially inhomogeneous phasesd the volume of within a layer. In a crystalline phase it presents a long-range

the computational box to fluctuate, thus permitting the Sys'structure, as that of Fig.(& at T=375 K, or, more distinctly,

tem to reach the |mp0_sed_valu§ of the average pressure. Thef\a lower temperature. The first peak corresponds to in-plane
particle beads are maintained in the configuration describe earest neighbors, while the positions of the two still re-

in Sec. | by means of the method of constraints reviewed in ; .
Ref. [59]. We have considered two pressures, 1.0 andsolved successive peaks are the mark of an in-plane hexago-

2.5 Kbar and several temperatures in the range 50-375 Ral order.gy(r) at T_375 K keeps oscillating at large dis-
for the lower pressure and 300—700 K fe=2.5 Kbar. At ta”C?S.V.Vhefe the functllon a—t.:400 K already a_pproaches
the lowest temperatures, we have started the simulation froﬁbe I'm']}'nhg valug_ of le|ty. Th|s.provels the I:cql;]'dl'kﬁ char-
a perfect crystal in a hexagonal closed-packed configuratiorﬁ(;fg(r)?( tTﬁ ;)|03|t|opa d ofr_der llns:de z.’:,. ager of the p fas‘e' a;
stretched along the coordinate of the laboratory frame and Behavio.r of?hgtti[rglele 'g:féﬁg‘:‘?&ﬁ fuilscﬁgnneg?(l::iégg the
with all particles parallel to this direction. The resulting com- The NPT definitign of 8) is
putational box was monoclinic, with the following cell vec- Y
tors and anglesa=(a,,0,0), b=(0,b,,0), andc=(0,c,,c); 1/1 R
«=90°, =90°, andy=60°. The init%al configuratioﬁyof the gplr) = N<_2 E ar —rj '”)>? (19
other temperatures has been the final one of the equilibration e
run of the respective previous temperature. To avoid unat bothT=400 K andT=375 K, as well as at lower tempera-
physical rotation of the simulational bo®, has been con- tures, this function, which gives information on positional
strained to lie orx andb to move in thexy plane. The time  order along the director, shows an oscillating structure with
step employed has been 5 fs. For every state point consigheaks being lower and wider, as the temperature is increased,
ered, a thermalization run of 500 ps has been followed by and separated by a distance of 22—23 A.
production run of 1 ngat selected state points, we have ex- The conclusions drawn from the analysis of the pair-
tended the time interval simulated up to 2 ns to check theorrelation functions are corroborated by the thermal behav-
stability of our results, which has proved very satisfactory ior of the bond orientational order parametig and of the
during which averages of thermodynamical and structurabmectic order parameter, shown in Figs. &) and 3b),
properties of interest have been acquired. They include thgespectively, for a pressure of 2.5 Kbar. The former is de-
number density, order parameters, single-particle distributiofined as
functions, and a family of pair-correlation functions. The re- 1
sults are presented and discussed below. Py = N 2 ,—E%(i) exp(i6d;) |, (20)
wherej e nn(i) means thaj is a nearest neighbor ofind
is the angle formed by the projection of onto a plane

We begin the presentation of our results by reporting innormal to the director with an axis in this plane. By construc-
Table | the values of the thermodynamical quantities enteringion, we have¥z=1 in the case of perfect in plane hexagonal
the equation of state, i.e., pressure, temperature, and densityrder and¥3=0 when that order is completely absent, as in
The last column contains the symbol of the correspondinghe smectic phase. Intermediate value¥gfcorrespond to a
type of phase. reduced in-plane hexagonal order, as it happens in a real hcp

IV. RESULTS AND DISCUSSION
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TABLE |. Calculated values for the quantities entering the equation of state of the rigid nine beadlace
model.

P (Kbar AP (Kbar) T (K) AT (K) 100, (A7) 100\ pg (A79) Phase

1.0 0.1 50 5 2.88 0.04 C
1.0 0.1 100 5 2.73 0.03 C
1.0 0.05 150 6 2.53 0.02 C
1.0 0.05 165 5 2.47 0.04 C
1.0 0.03 175 5 2.35 0.02 S
1.0 0.01 200 2 2.09 0.01 N
1.0 0.03 250 4 1.97 0.01 N
1.0 0.05 275 8 1.89 0.02 N/I
1.0 0.07 300 6 181 0.04 |
1.0 0.05 325 9 1.78 0.02 |
1.0 0.07 350 9 1.74 0.03 |
1.0 0.07 375 8 1.71 0.03 |
2.5 0.08 300 7 2.79 0.01 C
2.5 0.09 350 9 2.71 0.01 C
2.5 0.09 375 10 2.67 0.015 C
2.5 0.09 400 10 2.50 0.015 S
2.5 0.08 435 12 2.32 0.01 N
2.5 0.08 450 11 2.30 0.01 N
2.5 0.07 500 11 2.23 0.01 N
2.5 0.09 550 14 2.17 0.015 N
2.5 0.08 600 15 2.08 0.015 N/I
2.5 0.09 625 16 2.05 0.015 |
2.5 0.09 650 17 2.02 0.015 |
2.5 0.1 675 18 2.00 0.015 |
2.5 0.1 700 18 1.98 0.015 |

crystal. While atT=400 K W=0, the smectic order param- unit, P'=PD3/kgT (D is the diameter of the spherocylinder

eter 7, most generally defined as of the corresponding phase transition. To make a compari-
son, we can choose for our particles a valueDosuch that
,= ‘<ex;{i2w5>>’ (21) the NI phase transition occurs at the same re_duced pressure
d as in the case of spherocylinders, thus obtainingl @8 S

(1.68 N (1.12 I. Smectic phase seems to be destabilized
is far from being zero. It vanishes at the next temperaturgyith respect to both the crystalline phase and the nematic
examined atP=2.5Kbar, that isT=435K, and atT  phase.
=175 K at the lower pressure investigated. This is a clear In Fig. 4a) we plot the liquid-crystal phase diagram in the
symptom that a transition to a positionally homogeneousemperature-pressure plane determined from the theory out-
phase has occurred, as the featureless behavior of the pdlined in Sec. Il. When compared to computer experiment
correlation functions further testifies. This liquid phase is toresults, we see a fair agreement. At a fixed pressure, theory
be classified as nematitl), being nonzero the orientational overestimates SN and NI transition temperature by, roughly,
order parameten [Fig. 3(c), for P=2.5 Kbail. The latterisa 15%. The same level of accuracy is reached for coexistence
decreasing function of temperature, with a discontinuity addensities, displayed in Fig(d) as a function of temperature.
T=600 K, being close to zero beyond. We can assumét is worth noting that the performance of Parsons theory in
600 K as the approximate temperature at which a nematic teeproducing thermodynamic quantities of the SN phase tran-
isotropic (I) phase transition takes place Bt2.5 Kbar. sition is essentially the same as in the case of NI phase tran-
Analogously, the NI phase transition occursTat 275 K for  sition.

a pressure of 1 Kbar. Among the approximations contained in theory, the cho-

We note that the smectic region is quite narrow, if com-sen parametrization of the singlet distribution functions can
pared to that exhibited by hard spherocylinders of length-tobe readily tested. In Fig. p'(2)=p(2)/ p, calculated in simu-
width ratio equal to §48]. In the latter case we observe the l|ation atP=2.5 Kbar andl' =300, 350, 375 KC phas¢and
same sequence of phases; that iS234) S (1.44 N (1.12  T=400 K (S phasgis reported together with the correspond-
I. We have indicated in parentheses the pressure in reducéaly curve fitted through Eq.16). A good accord is found at
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FIG. 3. (a): Bond orientationalWg); (b) smectic(7); (c) nematic

FIG. 2. The layer(a and parallel(b) pair-correlation functions (7) order parameters, as a function of temperatur@=2.5 Kbar.

on either side of the crystal-to-smectic phase transitionPat

=2.5 Kbar. . . . .
The beads belonging to different particles interact through

the repulsive part of the Lennard-Jones potential in the well-
®nown wWcA separation. The interaction parameters have
been chosen such that the well depth, takes the value of
6.0x 107?? J ando, the range function, that of 3.9 A. Adja-

P=2.5 Kbay; in addition the smectic period found in cent beads in anv si .
. . ) y single array are separated by a distance of
simulations(22—23 A is smaller by a factor of 15% than , 5, A. so that the length-to-width ratio of a chain is ap-

that obtained in the theoretical procedure. We now pass tBroximater equal to 6.

the orientational distribution functions. Figure 6 shoivg) The phase behavior of a system of 600 such particles has
at different temperatures, as obtained in simulationat peen studied by molecular dynamics simulations in a
=2.5 Kbar, together with the_corresponding curves fitted bYisgthermal-isobaric ensemble, employing a Nosé-Hoover
Eq. (17). A good agreement is apparent at all temperaturesyermostat coupled with the Parrinello-Rahman technigue to
However, while the orientational order at the SN phase tran\—,ary volume and shape of the computational box. Four
sition is captured rather well by theoryps=0.93, 7y phases have been identified: crystalline, smectic, nematic,
~0.85 in simulation atP=2.5 Kbar versusps=0.91 and  anq isotropic. They have been characterized by discontinui-
7n=0.87 from theory at the same presgurthe latter, as  fies in density and order parameters and by the shape of the
expected, overestimates at the NI phase transitiof0.65  cajculated one- and two-particle distribution functions.
versus~=0.2-0.3. Finally, we note that in the smectic phase  The |C thermodynamic phase coexistence data have been
the probability to find particles p_erpendlcular to the Q'reaorconfronted with those obtained from a simple Onsager-type
(that are supposed to populate intralayer regigas/anish-  gensity functional theory with a Parsons scaling. The com-
ing small. This may imply that, at least for the present mOdelparison has concerned not only the nematic to isotropic
the decoupling between positional and orientational variablegpase transition but also the smectic to nematic one. We have
is a good approximation. found a fair accord between theory and simulation, with a
degree of accuracy similar for both types of phase transition.
This could be of interest since Parsons theory was shown to
We have considered a system of elongated particles conbe the best, at present, simple approach providing a reason-
posed of nine soft repulsive spheres held rigidly on a lineable description of the nematic to isotropic phase transition

every temperature. However, the smectic order paramet
found in simulations at the SN phase transiti@70, atP
=2.5 Kbay is higher than that calculated by thedi§.57 at

V. SUMMARY AND CONCLUSIVE REMARKS
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L e B S e B B “volume” of our soft particle, though some arbitrariness is
| @) hard to avoid in this caséNote that if the theory is applied
to hard spherocylinders, which have a well-defined volume,
the error in reproducing coexistence thermodynamic proper-
ties, especially density, is smallpt4,45)). In the search of
the optimal “volume” it is difficult not to proceed by “trials
and errors.” Indeed, we have tried another definitiorvgf
namely, that corresponding to take it equal to the effective
volume [10] of the hard counterparts of our soft particles
(that is, particles composed of nine hard spheres of diameter
3.9 A held rigid on a line with a bond distance equal to
2.34 A). We have obtained basically the same results as in
26l ® | Fig. 4, with the density varying less smoothly with tempera-
' ture in the last case. Another possibility, yet untried, could be
24l 0 1 to define an effective diametdr for the soft beads, interact-

| S 1 ing through Eq.(1), as

* * U
d :f 1—exr(——>dr
0 KgT

and takev, as the volume of a linear array of nine hard
{ 1 spheres with diametaf” and with a bond distance of @6
L6 . An additional source of error certainly resides in the form
200 200 500 of the singlet distribution functions. This form can be im-
proved either by a larger number of parameters or by adopt-
ing a different method to minimize free ener@gr instance,
FIG. 4. Theoretical liquid crystal phase diagram. MD simulation the Monte Carlo annealing method described in R&8]).
data are reported as grey ellipses with width and height determineblowever, both of these possible improvements are certainly
by the fluctuation of the corresponding quantity. associated with a considerable increase in the computational
cost; (the simulated annealing method may also possess a
thermodynamics in short-range repulsive models of liquidfurther disadvantage, i.e., the slowness in reaching stationary
crystals. This is well known for rigid bodies but it holds true points.
also for semiflexible particles, as demonstrated in Ref. Anyway, we believe that the accuracy exhibited by
Thus, the calculations presented in R&f can be extended present theory is already acceptable, keeping in mind its aim
to treat smectic phases formed by semiflexible particles andt reproducing, at least qualitatively, trends in phase dia-
may be of help in predicting and understanding trends irgrams of chain particles. We would like to stress that the
phase diagrams due to the varying degree of chain flexibilityresummed second virial theory employed here is intended to
There are several ways along which the present theorgive an account of just the thermodynamics of liquid-crystal
may be improved. One is a possible better choice of thghase transitions in calamitic model mesogens. We have seen
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cosf cosB
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15 15
T 10f- 10 )
S | | S
51 =
ob— L 111 ob— L 11 FIG. 6. Orientational distribution function at
o0 06z 04 06 08 I 0 02 04 06 P=2.5 Kbar and several temperatures. Compari-
VT 7 717 T W——T—T—T 71 T son between simulation resul¢solid lineg and
- 500K T - 600K T curves fitted via Eq(17) (dotted lines.
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that the agreement with computer experiment results generegime [60]. More elaborated density functional theories
ally gets worse as far as order parameters are concerne@uch as those based on the weighted density approximation
Moreover, we expect that the present theory will be able td47,61)) are to be used to address this point. The latter is still
reproduce just the gross features of pair-correlation funcrather in its infancy, though some progress has been recently
tions. Indeed, the direct correlation function predicted byachieved, especially thanks to the evaluation of direct corre-
theory is equal to the Mayer function with a density- lation functions of model anisometric particled2] and its
dependent prefactor, and this could be true only in the diluteise in the density functional theory formaliges3].
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